按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
共蛔阋匀范ㄈ死嘟⑶ㄡ愕木咛逑附凇=酉吕矗颐且プ费耙晃灰獯罄缴淖慵#不独罚惺觳牛幸惶欤妓髯畔妇筒杂涞墓叵担鋈挥幸桓鋈碌南敕ㄓ肯殖隼础�
意大利人的努力
1944年,路卡·卡瓦利…斯福扎考入帕维亚大学学习药学专业,不久他放弃了药学专业,开始致力于遗传学的研究,先是研究细菌,而后开始研究人类遗传学。在大学里,他的老师是著名的果蝇遗传学家布扎提·特拉维索。布扎提是杜布赞斯基①思想的追随者,杜布赞斯基也是理查德·莱旺廷的博士生导师。因此,他们的故事有着共同的开始。杜布赞斯基的主要研究方向是基因变异,特别是果蝇大范围的染色体色球重组。他是基因分析技术领域的开拓者,20世纪中期,他在纽约的实验室是生物学革命的发源地。关于基因变异,杜布赞斯基和他的学生们提出了一个全新的观点:在一个最优化的“自然类型”(一个在漫长时期内经自然选择创造的有机体的正常形态)和一个奇异的突变“异种”之间,并没有分界线。他们认为,原因非常简单,假如大多数突变“异种”都携带着有缺陷的基因“包裹”,那么变异的数量便会多到无法胜数,反过来证明,变异正是物种的正常状态,变异产生的过程正是进化的过程。在他们之前的研究者没有认识到,进化发生在包含着不同基因的“基因库”中,一个基因有时被复制,有时会丢失。
在药学和果蝇变异研究这两个完全不同的背景下,为了解读不同人群的相互关系,卡瓦利…斯福扎开始研究血液多态性,他的研究被后来的遗传学家们称为“经典的多态性”。那是20世纪的50年代,正是遗传学迅猛发展的时期,温斯顿和克瑞克①刚刚破译了DNA结构,自然科学的方法论推动了生物学的革命。和大多数遗传学家一样,卡瓦利…斯福扎在研究中应用了迅速发展的生物化学技术,但与他们不同的是,他同时应用了数学和统计学。多态性研究中出现的大量令人头晕目眩的数据,亟需一个内在连贯的理论系统,来分析和归纳这些数据。对统计学的应用,就像是在攀岩中有了结实的绳索。
想象一下一组基因变异的画面:河床上遍布色彩各异的石头,大小如蜗牛壳,与果蝇的翅膀等长。一眼望去,这些变异似乎毫无规则、互不联系,如果在它们背后加上不同的背景,它们会变得更加复杂、混乱,多样性究竟在向我们展示着什么?
20世纪50年代,面对自然的多样性,大多数生物学家下意识的反映是这出于自然选择的结果,对人类的多样性也不例外,就此优生学家已经说了很多。这一结果,很大程度上是因为人们确信有“自然类型”与“突变异种”之区别。自然类型是指一切“正常”的有机体,一些遗传性疾病(显然是“异常的”)似乎也证实这种观点是正确的。这些与遗传性疾病有关的基因,是最早被确定为变异基因的,因为按照达尔文的进化论,人可以被分为“适者”和“不适者”,遗传性疾病患者显然是“不适者”。但是,新的转变出现了:20世纪50年代,在美国从事研究的日本遗传学家木村资生,在遗传学的分析计算中使用了分析气体传播的方法,他继续沿着卡瓦利…斯福扎所开创的道路前行,他的努力最终将遗传学带离了“突变异种”的沼泽。
木村资生注意到,由于随意取样的误差,人群基因多态性的频率会发生变化,这正是前文中所提到的“漂移”,在他的理论中令人兴奋的是,他发现漂移对基因变化频率的改变似乎是可以预测的。研究自然选择的困难之处,是产生进化改变的“速度”完全取决于选择的“强度”,假如基因变异与自然完全适合,那么它便会以很高的速率繁殖。但是,自然选择的强度是无法用实验测量的,因此变化的速率是无法预测的。在抛硬币的例子里,抛起10次得到了7∶3的结果,假定硬币的正面代表一个基因变异,反面代表另一种,每一代的变化速率从50%增加到70%,意味着极强的对“正面”的选择。很显然,尽管这只是假设,但“正面”的比率增加到70%,与“正面”是否适应自然是没有关系的。
这就是木村资生的独特见解,他认为大多数多态性都是以这种方式产生的:在与自然选择的关系中,它们是自由的,因此它们是进化过程的“中立者”。围绕这一理论,生物学家们的争论非常激烈。木村资生和他的拥护者认为,几乎所有的基因变异都与自然选择无关,但许多科学家仍然坚持认为它是自然选择的关键环节。尽管如此,漂移理论为多态性的研究打开了一个崭新的窗口。在新变化到来之前,让我们先回到中世纪,去作一次短暂的停留。
。 最好的txt下载网
“奥卡姆的剃刀”
奥卡姆的威廉(1285~1349年)是中世纪的学者,他是一名修士,坚信亚里士多德的观点:自然界选择最短的道路。利用一切机会,他与同事们就他个人对这个观点的理解进行辩论。著名的“奥卡姆的剃刀”原理为“如无必要,勿增实体”,在本质上,这个原理是关于宇宙的哲学观,即吝啬定律(亦称朴素定律)。在现实世界中,假如特定的事件均由特定的可能性引起,那么多个事件便由多个可能性引起,因此,复杂的事件不如简单的事件可靠。这一原理的核心是将自然世界的复杂性,分割成可理解的几个部分,趋向简单,避免复杂。以这个原理为指导,一个人要从迈阿密到纽约,他会选择从迈阿密直接飞往纽约,而不是绕行上海。
也许确定行程计划只是举手之劳,但在黑暗的科学世界,要确定从何时何处着手却非易事。我们如何知道自然界永远选择最短、最简单的道路?“朴素”是自然界自我证明的语言?这本书的目的不是讨论朴素定律,但是种种迹象显示:自然常常趋向简单而避免复杂,尤其是当变化发生时。想一想一块石头从悬崖落到山谷时所选择的路线!自然界的引力,使它直接从高处快速落到低处,而不是把它中途送到中国去喝上一杯茶。
因此,假如我们相信当自然发生变化时,它会选择从A点到B点的最短距离,那么我们就可以建立一个推断过去发生事件的理论。这是一个伟大的进步,它意味着我们通过观察当前能够推测出过去发生了什么。事实上,它像一台哲学的时间机器,能够将我们带回早已湮灭的时代。一台神奇美妙的机器!在这一点上,甚至达尔文早期的支持者赫胥黎都指责他的那个过于墨守成规的信念,即“自然不会发生突变”。
1964年,卡瓦利…斯福扎和安东尼·爱德华兹合作出版了一本书,首次将吝啬定律应用于人类分类的研究。在书中他们提出了两个假说,在人类学研究的历史上,它们是两个当之无愧的里程碑,此后所有的基因多样性研究无不涉及这两个假说。第一个是:正如木村资生的“中立”理论,基因多态性完全是中立的,基因漂移引起基因速率的变化;第二个是:应用“奥卡姆的剃刀”原理来确定人群之间的相互关系,即以数量变化的最小化,来解释、分析掌握的数据。基于这些关键理论和他们称之为“最简单进化”的研究方法,他们画出了第一棵人类的“家谱树”,人群的相互关系反映在了一张图表中,越接近的基因速率联系得越紧密。
卡瓦利…斯福扎和爱德华兹分析了世界各地15个人群的血型速率,用那个年代的奥利维第计算机经过艰苦的运算,他们得出的结论是:在“家谱树”上,非洲人处于最靠近“树根”的位置,欧洲人和亚洲人“丛生”在一起。这一结果,首次直接、清晰、令人震撼地反映出了人类的进化历史。卡瓦利…斯福扎谦虚地说:“分析结果有一些意义。”应用他们的研究方法,结果显示:欧洲的人群相互之间的关系,比他们与非洲人群间的关系要密切;新几内亚人与澳大利亚土著人之间联系更紧密等。把它们联系在一起的是相似的基因速率,这些速率随时间流逝有规律地变化(基因漂移的结果),这意味着,欧洲人群之间相互分离的时间,比欧洲人和非洲人分离的时间距现在更近。700年以后,老修道士的原理帮助人类学的研究进入了一个新的天地。
有了这种区分人群的新方法,就有可能推算出不同人群分离的时间,推断人类进化的历程。1971年,卡瓦利…斯福扎和沃特·波曼①首次进行了这方面的研究,他们推算出非洲人和东亚人的分离时间为4万1千年前,非洲人和欧洲人的为3万3千年,欧洲人和东亚人的为2万1千年。现在的问题是,我们无法确定他们对人群结构的假设是否合理。更关键的问题是,这些推断无法清晰地回答这一问题:我们从何处来?人类学的领域现在需要新的数据。
txt电子书分享平台
字母汤
艾米尔·朱克坎德是从德国移居到美国的犹太人,他曾在加利福尼亚理工大学工作。在他的科学生涯中,他坚持致力于研究一个课题:蛋白质结构。在20世纪50年代和60年代,他长期在诺贝尔奖得主、著名生化学家里努斯·鲍林门下从事研究工作。他研究携氧血红蛋白分子的基本结构,选择这种分子是因为它在血液中含量丰富而且易于净化,另外很重要的一点是所有哺乳动物的血液中都含有血红蛋白。
蛋白质由线形排列的氨基酸组成,小分子结构以独特的方式相结合形成蛋白质。有趣的是,尽管蛋白质在活动时外形像巴洛克建筑一样扭曲复杂,几个不同类型的蛋白质相互依附形成一个复杂的结构,但实际上它们很“单纯”,活动蛋白质的结构和功能完全取决于氨基酸的线性结合。组成蛋白质的氨基酸有20个,如赖氨酸、色氨酸等。
朱克坎德注意到,在这些氨基酸的排列中,有一种现象非常有趣。他当时正在破译不同动物的血红蛋白,他发现这些蛋白质之间十分相似,一行中常常有10、12甚至30个同样排列的氨基酸。更令人惊奇的是,科属联系越密切的动物,它们蛋白质的结构就越相似。人类和大猩猩的血红蛋白,在氨基酸排列上仅有两处不同,而人类和马的不同达15处。对这种现象,朱克坎德和鲍林这样推断:分子结构提供了“分子钟”,通过氨基酸排列顺序的变化,它记载着从生命起源那一刻起,那些业已消逝的时间。1965年,在他们发表的一篇论文中,他们形象地将分子称为“记载进化历史的文件”。事实上,我们每个人的基因都堪称一部历史书,这些写在分子结构内的“语言”,向我们讲述着人类进化的过程,把我们带回生命开始的地方。分子就像我们的祖先留在我们基因组内的“时间舱”,我们所要做的,是学会如何使用它们。
当然,朱克坎德和鲍林意识到了,蛋白质不是遗传变异的最佳“发言人”,这个光荣是属于DNA的。如果DNA的作用是转译蛋白质(事实正是如此),那么无疑它最具研究价值。问题是研究DNA极其困难,得到一个排列顺序需要漫长的时间。到了20世纪70年代中期,沃尔特·吉尔伯特和弗雷德·桑格发明了快速获取DNA顺序的方法,并因此分享了1977年的诺贝尔化学奖。正是他们的研究