友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
聚奇塔 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

狭义与广义相对论浅说-第4部分

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



动状态无关。但是我们刚才看到,这个假定与最自然的同时性定义是不相容的;如果我们抛弃这个假定,那么真空中光的传播定律与相对性原理之间的抵触(详见第7节)就消失了。
  这个抵触是根据第6节的论述推论出来的,这些论点现在已经站不住脚了。在该节我们曾得出这样的结论:在车厢里的人如果相对于车厢每秒走距离w,那么在每一秒钟的时间里他相对于路基也走了相同的一段距离。但是,按照以上论述,相对于车厢发生一特定事件的需要的时间,决不能认为就等于从路基(作为参考物体)上判断的发生同一事件所需要的时间。因此我们不能硬说在车厢里走动的人相对于铁路线走距离w所需的时间从路基上判断也等于一秒钟。
  此外,第6节的论述还基于另一个假定。按照严格的探讨看来,这个假定是任意的,虽然在相对论创立以前人们一直在物理学中隐藏着这个假定。
  10.距离概念的相对性
  我们来考虑火车上的两个特定的点,火车以速度v在铁路上行驶,现在要研究这两个点之间的距离。我们已经知道,测量一段距离,需要有一个参考物体,以便相对于这个物体量出这段距离的长度。最简单的办法是利用火车本身作为参考物体(坐标系).在火车上的一个观察者测量这段间隔的方法是用他的量杆沿着一条直线(例如沿着车厢的地板)一下一下地量,从一个给定的点到另一个给定的点需要量多少下他就量多少下。那么告诉我们这个量杆需要量多少下的那个数字就是所求的距离。
  如果火车上的这段距离需要从铁路线上来判断,那就是另一回事了,这里可以考虑使用下述方法。如果我们把需要求出其距离的火车上的两个点称为A’和B’,那么这两个点是以速度v沿着路基移动的。首先我们需要在路基上确定两个对应点A和B,使其在一特定时刻,恰好各为A’和B’所通过(由路基判断)。路基上的且点和日点可以引用第8节所提出的时间定义来确定,然后再用量杆沿着路基一下一下地量取A、B两点之间的距离。
  从先验的观点来看,丝毫不能肯定这次测量的结果会与第一次在火车车厢中测量的结果完全一样。因此,在路基上量出的火车长度可能与在火车上量出的火车长度不同,这种情况使我们有必要对第6节中从表面上看来是明白的论述提出第二个不同意见。就是,如果在车厢里的人在单位时间内走了一段距离w(在火车上测量的),那么这段距离如果在路基上测量并不一定也等于w。
  11.洛伦兹变换
  上面最后三节的结果表明,光的传播定律与相对性原理的表面抵触(第7节)是根据这样一种考虑推导出来的,这种考虑从经典力学借用了两个不确当的假设;这两个假设就是:
  (1)两事件的时间间隔(时间)与参考物体的运动状况无关。
  (2)一刚体上两点的空间间隔(距离)与参考物体的运动
  如果我们舍弃这两个假设,第7节中的两难局面就会消失,因为第6节所导出的速度相加定理就失效了,看来真空中光的传播定律与相对性原理是可以相容的,因此就产生这样的问题:我们必须如何修改第6节的论述以便消除这两个基本经验结果之间的表面矛盾,这个问题导致了一个普遍性问题。在第6节的讨论中,我们既要相对于火车又要相对于路基来谈地点和时间,如果我们已知一事件相对于铁路路基的地点和时间,如何求出该事件相对于火车的地点和时间呢?对于这个问题能否想出能使真空中光的传播定律与相对性原理不相抵触的解答,换言之:我们能否设想,在各个事件相对于一个参考物体的地点和时间与各该事件相对于另一个参考物体的地点和时间之间存在着这样一种关系,使得每一条光线无论相对于路基还是相对于火车,它的传播速度都是c呢?这个问题获得了一个十分明确的肯定解答,并且导致了用来把一个事件的空一时量值从一个参考物体变换到另一个参考物体的一个十分明确的变换定律。
  在我们讨论这一点之前,我们将先提出需要附带考虑的下列问题。到目前为止,我们仅考虑了沿着路基发生的事件,这个路基在数学上必须假定它起一条直线的作用。如第2节所述,我们可以设想这个参考物体在横向和竖向各予补充一个用杆构成的框架,以便参照这个框架确定任何一处发生的事件的空间位置。同样,我们可以设想火车以速度”继续不断地横亘整个空间行驶着,这样,无论一事件有多远,我们也都能参照另一个框架来确定其空间位置。我们尽可不必考虑这两套框架实际上会不会因固体的不可入性而不断地相互干扰的问题;这样做不致于造成任何根本性的错误,我们可以设想,在每一个这样的框架中,划出三个互相垂直的面,称之为“坐标平面”(在整体上这些坐标平面共同构成一个“坐标系”)。于是,坐标系K对应于路基,坐标系K’对应于火车。一事件无论在何处发生,它在空间中相对于K的位置可以由坐标平面上的三条垂线x;y;z来确定,时间则由一时间量值:来确定,相对于K',此同一事件的空间位置和时间将由相应的量值x';y';z';t'来确定,这些量值与x;y;z;t当然并不是全等的。关于如何将这些量值看作为物理测量的结果,上面己作了详细的叙述。
  显然我们面临的问题可以精确地表述如下,若一事件相对于K的x;y;z;t诸量值为何?在选定关系式时,无论是相对于K或是相对于K',对于同一条光线而言(当然对于每一条光线都必须如此)真空中光的传播定律必须被满足。若这两个坐标系在空间中的相对取向如图2所示,这个问题就可以由下列议程组解出:
  这个议程组称为“洛伦兹变换”。
  如果我们不根据光的传播定律,而根据旧力学中所隐含的时间和长度具有绝对性的假定,那么我们所得到的就不会是上述方程组,而是如下的方程组:
  x'=x…vt
  y'=y
  z'=z
  t'=t
  这个方程组称为“伽利略变换”,在洛伦兹变换方程中,我们如以无穷大值代换光速c,就可以得到伽利略变换方程。
  通过下述例示,我们可以很容易地看到,按照洛伦兹变换,无论对于参考物体K还是对于参考物体K',真空中光的传播定律都是被满足的。例如沿着正x轴发出一个光信号,这个光刺激按照下列方程前进
  x=ct
  亦即以速度c前进。按照洛伦兹变换方程,x和t之间有了这个简单的关系,则在x'和t'之间当然也存在着一个相应的关系,事实也正是如此:把x的值ct代入洛伦兹变换的第一个和第四个方程中,我们就得到:
  这两方程相除,即直接得出下式:
  x'=ct'
  亦即参照坐标系K',光的传播应当按照此方程式进行,由此我们看到,光相对于参考物体K'的传播速度同样也是等于c。对于沿着任何其他方向传播的光线我们也得到同样的结果。当然,这一点是不足为厅的,因为洛伦兹变换议程就是依据这个观点推导出来的。
  12.量杆和钟在运动时的行为
  我沿着K'的x'轴放置一根米尺,令其一端(始端)与点x'=0重合,另一端(末端)与点x'=1重合。问米尺相对于参考系K的长度为何?要知道这个长度,我们只须求出在参考系K的某一特定时刻t、米尺的始端和末端相对于K的位置。借助于洛伦兹变换第一方程,该两点在时刻t=0的值可表示为
  两点间的距离为。但米尺相对于K以速度度v运动。因此,沿着其本身长度的方向以速度v运动的刚性米尺的长度为米。因此刚尺在运动时比在静止时短,而且运动得越快刚尺就越短。当速度v=c,我们就有=0,对于较此更大的速度,平方根就变为虚值,由此我们得出结论:在相对论中,速度c具有极限速度的意义,任何实在的物体既不能达到也不能超出这个速度。
  当然,速度c作为极限速度的这个特性也可以从洛伦兹变换方程中清楚地看到,因为如果我们选取比c大的v值,这些方程就没有意义。
  反之,如果我们所考察的是相对于K静止在x轴上的一根米尺,我们就应该发现,当从K'去判断时,米尺的长度是,这与相对性原理完全相合,而相对性原理是我们进行考察的基础。
  从先验的观点来看,显然我们一定能够从变换方程中对量杆和钟的物理行为有所了解,因为x;y;z;t诸量不多也不少正是借助于量杆和钟所能获得的测量结果。如果我们根据伽利略变换进行考察,我们就不会得出量杆因运动而收缩的结果。
  我们现在考虑永久放在K'的原点(x'=0)上的一个按秒报时的钟。t'=0和t'=1对应于该钟接连两声滴嗒。对于这两次滴嗒洛伦兹变换的第一和第四议程给出:
  t=0
  从K去判断,该钟以速度v运动;从这个参考物体去判断,该钟两次滴嗒之间所经过的时间不是1秒,而是秒,亦即比1秒钟长一些。该钟因运动而比静止时走得慢了。速度c在这里也具有一种不可达到的极限速度的意义。
  13.速度相加定理斐索实验
  在实践上我们使钟和量杆运动所能达到的速度与光速相比是相当小的;因此我们不大可能将前节的结果直接与实在的情况比较。但是,另一方面,这些结果必然会使读者感到十分奇特;因此,我将从这个理论再来推出另外一个结论,这个结论很容易从前面的论述中推导出来,而且这个结论已十分完善地为实验所证实。
  在第6节我们推导出同向速度相加定理,其所取形式也可以由经典力学的假设推出。这个定理也可以很容易地由伽利略变换(第11节)推演出来。我们引进相对于坐标系K'按照下列方程运动的一个质点来代替在车厢里走动的人
  x=wt'
  借助于伽利略变换的第一和第四方程,我们可以用x和t来表示x'和t',我们得到其间的关系式
  x=(v+w)t
  这个方程所表示的正是该点相对于坐标系K的运动定律(人相对于路基的运动定律)。我们用符号W表示这个速度,象在第6节一样,我们得到
  W=v+w
  但是我们同样也可以根据相对论来进行这一探讨。在方程
  x'=wt'
中我们必须引用洛伦兹变换的第一和第四方程借以用x和t来表示x'和t'。这样我们得到的就不是方程(A),而是方程(B)。
  这个方程对应于以相对论为依据的另一个同向速度相加定理。现在引起的问题是这两个定理哪一个更好地与经验相符合。关于这个问题,我们可以从杰出的物理学家斐索在半个多世纪以前所做的一个极为重要的实验上得到启发,这个实验在后来曾由一些最优秀的实验上得到启发,这个实验在后来曾由一些最优秀的实验物理学家重新做过,因此,这个实验的结果是无可怀疑的。这个实验涉及下述问题。光以特定速度w在静止的液体中传播。现在如果上述液体以速度v在管T内流动,那么光在管内尚箭头(图3)所指方向的传播速度有多快呢?
  按照相对性原理,我们当然必须认定光相对于液体总是以同一速度w传播的,不论此液体相对于其他物体运动与否。因此,光相对于液体的速度和液体相对于管的
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!