友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
聚奇塔 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

形而上学-第57部分

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!




…… 342

    。

    043。形而上学

    明。我们所见的一〈单位〉无论在量上和在质上不异于别个一〈单位〉,而数必须是或等或不等——一切数均应如此,而抽象〈单位〉所组成的数更应如此——所以,凡一数若既不大于亦不小于另一数,便应与之相等;但在数上所说的相等,于两事物而言,若品种不异而相等者则谓之相同。倘品种有异,虽“本10”中之诸2,即便它们相等,也不能不被分化,谁要说它们并不分化,又能提出怎样的理由?

    又,假如每个1加另1为2,从“本2”中来的1和从“本3”中来的1亦将成2。

    现在(甲)这个2将是相异的1所组成;(乙)这10个2对于3应属先于抑为后于?似乎这必是先于;因为其中的一个单位与3为同时,另一个则与2为同时。

    于我们讲来,一般1与1若合在一起就是2,无论事物是否相等或不等,例如这个善一和这个恶一,或是一个人和一匹马,总都是“2”。

    假如“本3”为数不大于2,这是可诧异的;假如这是较大,那么清楚地其中必有一个与2相等的数,而这数便应与“本2”不相异。但是,若说有品种相异的第一类数与第二类数这就不可能了。

    意式也不能是数。

    因为在这特点上论,倘真以数为意式,那么主张单位应各不同的人就该是正确的了;这在先曾已讲过。

    ①通式是整一的;但“诸1”若不异,“诸2”与“诸3”亦应不异。所以当我们这样计点——“1,2”……他们就必得说这个并不是1个加于前一个数;因为照我们的做法,数就

    ①见1081a5—17。

…… 343

    形而上学。

    143。

    不是从未定之2制成,而一个数也不能成为一个意式;因为这样一个意式将先另一个意式存在着而所有诸通式将成为一个通式的诸部分。

    ①这样,由他们的假设来看,他们的推论都是对的,但从全局来看,他们是错的;他们的观念为害匪浅,他们也得承认这种主张本身引致某些疑难,——当我们计点时说“1,2,3”究属是在一个加一个点各数呢,还是在点各个部分呢。

    ②但是我们两项都做了;所以从这问题肇致这样重大的纷歧,殊为荒唐。

    章 八最好首先决定什么是数的差异,假如一也有差异,则一的差异又是什么。单位的差异必须求之于量或质上;单位在这些上面似乎均有差异。

    但数作为数论,则在量上各有差异。

    假如单位真有量差,则虽是有一样多单位的两数也将有量差。

    又在这些具有量差的单位中是那第一单位为较大或较小,抑是第二单位在或增或减?所有这些都是不合理的拟议。它们也不能在质上相异。因为对于诸单位不能系以属性;即便对于列数,质也只能是跟从量而为之系属。

    ③又,1与未定之2均不能使数发生质别,因为1本无质而未定之2只有量性;这

    ①意即所有列数,均为一个最大数的许多部分。

    ②亚贝尔脱(O。

    Apelt)解释亚氏语意:点数如当作加法,则各数均为数学之数;如把每一数当作一个个别生成之事物,就得成为各别的数。亚氏认为用两种看法来看这点计动作均无不可。

    ③数之质别有素数或组合数,平面(二次)或立体数(三次)

    ,这些质别皆为量变所成的属性。参看卷,章十四1020b3—8。

    Q

…… 344

    。

    243。形而上学

    一实是只具有使事物成为多的性能。假如事实诚不若是,他们该早在论题开始时就有说明,并决定何以单位的差异必须存在,他们既未能先为说明,则他们所谓差异究将何所指呢?

    于是明显地,假如意式是数,诸单位就并非全可相通,在〈前述〉两个方式中也不能说它们全不相通。

    ①但其他某些人关于数的议论方式也未为正确。那些不主于意式,也不以意式为某些数列的人,他们认为世上存在有数理对象而列数为现存万物中的基本实是,“本1”又为列数之起点。这是悖解的:照他们的说法,在诸1中有一“原1”

    〈第一个1〉,却在诸2中并不建立“原2”

    〈第一个2〉,诸3中也没有“原3”

    〈第一个3〉。

    ②同样的理由应该适用于所有各数。关于数,假使事实正是这样,人们就会得想到惟有数学之数实际存在,而1并非起点(因这样一类的1将异于其它诸1;而2,也将援例存在有第一个2与诸2另作一类,以下顺序各数也相似)。

    但,假令1正为万物起点,则关于数理之实义,毋宁以柏拉图之说为近真,“原2”与“原3”便或当为理所必有,而各数亦必互不相通。反之,人苟欲依从此说,则又不能免于吾人上所述③若干不符事实之结论。但,两说必据其一,若两不可据,则数便不能脱离于事物而存在。

    这也是明显的,这观念的第三翻版④最为拙劣——这就

    ①参看1080a18—20,23—35。

    ②20行某人指斯泮雪浦;他不主于意式数而以“本1”为通式要理(本因)

    ,亚氏于此诋其瑕疵。

    ③参看1080b37—1083a17。

    ④指齐诺克拉底之说,参看1080b2。

…… 345

    形而上学。

    343。

    是意式之数与数学之数为相同之说。这一说合有两个错误。

    (一)

    数学之数不能是这一类的数,只有持此主张的人杜撰了某些特殊的线索才能纺织起来。

    (二)

    主张意式数的人们所面对着的一切后果他也得接受。

    毕达哥拉斯学派的数论,较之上述各家较少迷惑,但他们也颇自立异。他们不把数当作独立自在的事物,自然解除了许多疑难的后果;但他们又以实体为列数所成而且实体便是列数,这却是不可能的。这样来说明不可区分的空间量度是不真确的;这类量度无论怎么多怎么少,诸1是没有量度的;一个量度怎能由不可区分物来组成?算术之数终当由抽象诸1来组成。但,这些思想家把数合同于实物;至少他们是把实物当作列数所组成,于是就把数学命题按上去。

    于是,数若为一自存的实物,这就必需在前述诸方式中的一式上存在,如果不能在前述的①任何一式上存在,数就显然不会具有那样的性质,那些性质是主张数为独立事物的人替它按上去的。

    又,是否每个单位都得之于“平衡了的大与小”抑或一个由“小”来另一个由“大”来?

    (甲)若为后一式,每一事物既不尽备所有的要素,其中各单位也不会没有差异;因为其中有一为大,另一为与大相对反的小。在“本3”中的诸单位又如何安排?其中有一畸另单位。但也许正是这缘由,他们以“本一”为诸奇数中的中间单位。

    ②(乙)但两单位若都

    ①见于1080a15—b36。

    ②参看第尔士辑“先苏格拉底”

    (第三版)卷一,346,17—22,又270,18。

…… 346

    。

    43。形而上学

    是平衡了的大与小,那作为整个一件事物的2又怎样由大与小组成?

    或是如何与其单位相异?

    又,单位是先于2;因为这消失,2也随之消失。

    于是1将是一个意式的意式,这在2以前先生成。那么,这从何生成?不是从“未定之2”

    ,因为“未定之2”的作用是在使“倍”。

    再者,数必须是无限或是有限(因为这些思想家认为数能独立存在,并就应该在两老中确定其一①)。清楚地,这不能是无限;因为无限数是既非奇数又非偶数,而列数生成非奇必偶,非偶必奇。其一法,当1加之于一个偶数时,则生成一个奇数;另一法,当1被2连乘时,就生成2的倍增数;又一法当2的倍增数,被奇数所乘时就产生其它的偶数。

    ②

    又,假如每一意式是某些事物的意式,而数为意式,无限数本身将是某事物(或是可感觉事物或是其它事物)的一个意式。

    可是这个本身就不合理,而照他们的理论也未必可能,至少是照他们的意式安排应为不可能。

    但,数若为有限,则其极限在那里?关于这个,不仅该

    ①如果数是独立存在的,其实现必须是一个无限或是一个有限数。亚氏自己的主张是数只能潜在地为无限,其所实现必为一有限数。

    ②柏拉图“巴门尼德”

    14A以1与2为奇偶起点由1与2相加得3;用此三数,(1)以偶乘偶,(2)奇乘奇,(3)奇乘偶,(4)偶乘奇,四法制作列数。

    (3)

    (4)两法实际相同。由(1)与(3)

    (4)可得一切偶数:2的倍增数即乘方数2,4,8,16。其中所缺偶数由2×3=6,2×5=10,4×3=12,2×7=14……来递补。但(2)法不能得一切奇数。素数如5,7等均非乘法所能制成。柏拉图以加法制成第一个素数3。实际其它素数均须由偶数加一制成。

…… 347

    形而上学。

    543。

    举出事实,还得说明理由。倘照有些人①所说数以10为终,则通式之为数,也就仅止于10了;例如3为“人本”

    ,又以何数为“马本”?

    作为事物之本的若干数列遂终于10。

    这必须是在这限度内的一个数,因为只有这些数才是本体,才是意式。可是这些数目很快就用尽了;动物形式的种类着实超过这些数目。同时,这是清楚的,如依此而以意式之“3”为“人本”

    ,其它诸3亦当如兹(在同数内的诸)

    亦当相似)

    ,②这样将是无限数的人众;假如每个3均为一个意式,则诸3将悉成“人本”

    ,如其不然,诸3也得是一般人众。又,假如小数为大数的一部分(姑以同数内的诸单位为可相通)

    ,于是倘以“本4”为“马”或“白”或其它任何事物的意式,则若人为2时,便当以人为马的一个部分。这也是悖解的,可有10的意式,而不得有11与以下各数的意式。又,某些事物碰巧是,或也实际是没有通式的;何以这些没有通式?我们认为通式不是事物之原因。

    又,说是由1至10的数系较之本10更应作为实物与通式,这也悖解。本10是作为整体而生成的,至于1至10的数系,则未见其作为整体而生成。

    他们却先假定了1至10为一个完整的数系。至少,他们曾在10限以内创造了好些衍生物——例如虚空,比例,奇数以及类此的其它各项。他们将动静,善恶一类事物列为肇始原理,而将其

    ①以十为数之终其旨出于毕达哥拉斯学派,此处所指包括柏拉图在内(参看“物学”206b32)

    ,大约斯泮雪浦亦从此旨。

    ②此括弧内支句费解。罗宾(Robin)解为在“意式4”内之�
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!