友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
聚奇塔 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

参透记忆-第335部分

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



以记录不多了。他是最高无上的,他就是道,不会参与世间之事情,不会偏袒任何人,世间的任何事情对他来说不过是无足轻重的鹅毛,真正做到顺天道而任自然。只要不是发生毁天灭地的圣人之争斗,他不会出现。

一道传三友,指的是鸿钧道人之大道传老子、元始和通天教主三人,三人皆是道门正宗领袖,这三人是鸿钧道人的嫡系传人,皆是混元大罗金仙,历万劫不磨之体-----也就是圣人。二教阐截分,指道门划分出阐截二教,元始主阐教,通天主截教。接引与准提是西方教两位教主。他们皆称鸿钧道人为老师,说明他们乃可能听过鸿钧道人的讲道,但是没有得到嫡系的传授,所以虽然经过万般磨难,也修成混元大罗金仙,历万劫不磨之体-----圣人,但是对天地之演化,造化之领悟不如前面三人。混沌初开时,西昆仑有一生灵得到造化神器的一部残片“造化玉牒”,修成太乙真仙自号鸿钧老祖。以前有句话“先有鸿钧后有天,陆压道君还在前”!但陆压道君则不得而知了。陆压道君在北海鱼鲮岛,属散仙,辈份奇高,但在神仙榜上功劳并不大,所以记录不多了。

韩耀逊的实力虽然并不能算得上是非常高,但是凭着玉牌的帮助韩耀逊的实力也算得上是强悍,玉牌中的法则直到现在韩耀逊也没有完全看清楚,至少这种能无中生有的本事韩耀逊就不是很明白,如果仅仅是能量的话韩耀逊或许还可以了解到这里的主要动向,但是如果说这些真真正正的物体,韩耀逊就很是不明白了,要知道创造物体很简单只需要转眼的工夫韩耀逊甚至也能模仿出大部分东西的物体,但是其中的内容却完全不是韩耀逊能够了解的,因为这里面很多药材的特性就不是韩耀逊能够理解的,就算是用现代科技也不能完完全全不会出错的情况下将一种生命复制出来。

—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

要知道很多东西不仅仅是利用这细胞就能复制出来的,要知道很多东西是没有细胞的,就像是这些矿石它里面有很多元素但是却没有任何的细胞。基因复制是指DNA双链在细胞分裂以前进行的复制过程,复制的结果是一条双链变成两条一样的双链(如果复制过程正常的话),每条双链都与原来的双链一样。这个过程是通过名为半保留复制的机制来得以顺利完成的。

复制的引发(Priming)阶段包括DNA复制起点双链解开,通过转录激活步骤合成RNA分子,RNA引物的合成,DNA聚合酶将第一个脱氧核苷酸加到引物RNA的3‘-OH末端复制引发的关键步骤就是前导链DNA的合成,一旦前导链DNA的聚合作用开始,滞后链上的DNA合成也随着开始,在所有前导链开始聚合之前有一必需的步骤就是由RNA聚合酶(不是引物酶)沿滞后链模板转录一短的RNA分子。在有些DNA复制中,(如质粒ColE),该RNA分子经过加式成为DNA复制的引物。但是,在大部分DNA复制中,该RNA分子没有引物作用。它的作用似乎只是分开两条DNA链,暴露出某些特定序列以便引发体与之结合,在前导链模板DNA上开始合成RNA引物,这个过程称为转录激活(transcriptionalactivation),在前导链的复制引发过程中还需要其他一些蛋白质,如大肠杆菌的dnaA蛋白。这两种蛋白质可以和复制起点处DNA上高度保守的4个9bp长的序列结合,其具体功能尚不清楚。可能是这些蛋白质与DNA复制起点结合后能促进DNA聚合酶Ⅲ复合体的七种蛋白质在复制起点处装配成有功能的全酶。DNA复制开始时,DNA螺旋酶首先在复制起点处将双链DNA解开,通过转录激活合成的RNA分子也起分离两条DNA链的作用,然后单链DNA结合蛋白质结合在被解开的链上。由复制因子X(n蛋白),复制因子Y(n‘蛋白),n〃蛋白,i蛋白,dnaB蛋白和dnaC蛋白等6种蛋白质组成的引发前体(preprimosome),在单链DNA结合蛋白的作用下与单链DNA结合生成中间物,这是一种前引发过程。引发前体进一步与引物酶(primase)组装成引发体(primosome)。引发体可以在单链DNA上移动,在dnaB亚基的作用下识别DNA复制起点位置。首先在前导链上由引物酶催化合成一段RNA引物,然后,引发体在滞后链上沿5‘→3‘方向不停的移动(这是一种相对移动,也可能是滞后链模板在移动,见后),在一定距离上反复合成RNA引物供DNA聚合酶Ⅲ合成冈崎片段使用,引发体中许多蛋白因子的功能尚不清楚。但是,这些成份必须协同工作才能使引发体在滞后链上移动,识别合适的引物合成位置,并将核苷酸在引发位置上聚合成RNA引物。由于引发体在滞后链模板上的移动方向与其合成引物的方向相反,所以在滞后链上所合成的RNA引物非常短,一般只有3-5个核苷酸长。而且,在同一种生物体细胞中这些引物都具有相似的序列,表明引物酶要在DNA滞后链模板上比较特定的位置(序列)上才能合成RNA引物。

为什么需要有RNA引物来引发DNA复制呢?这可能尽量减少DNA复制起始处的突变有关。DNA复制开始处的几个核苷酸最容易出现差错,因此,用RNA引物即使出现差错最后也要被DNA聚合酶Ⅰ切除,提高了DNA复制的准确性。RNA引物形成后,由DNA聚合酶Ⅲ催化将第一个脱氧核苷酸按碱基互补原则加在RNA引物3‘-OH端而进入DNA链的延伸阶段。

DNA新生链的合成由DNA聚合酶Ⅲ所催化,然而,DNA必须由螺旋酶在复制叉处边移动边解开双链。这样就产生了一种拓扑学上的问题:由于DNA的解链,在DNA双链区势必产生正超螺旋,在环状DNA中更为明显,当达到一定程度后就会造成复制叉难再继续前进,从而终止DNA复制。但是,在细胞内DNA复制不会因出现拓扑学问题而停止。有两种机制可以防止这种现象发生:'1'DNA在生物细胞中本身就是超螺旋,当DNA解链而产生正超螺旋时,可以被原来存在的负超螺旋所中和;'2'DNA拓扑异构酶Ⅰ要以打开一条链,使正超螺旋状态转变成松弛状态,而DNA拓扑异构酶Ⅱ(旋转酶)可以在DNA解链前方不停地继续将负超螺旋引入双链DNA。这两种机制保证了无论是环状DNA还是开环DNA的复制顺利的解链,再由DNA聚合酶Ⅲ合成新的DNA链。前已述及DNA生长链的延伸主要由DNA聚合酶催化,该酶是由7种蛋白质(多肽)组成的聚合体,称为全酶。全酶中所有亚基对完成DNA复制都是必需的。α亚基具有聚合功能和5‘→3‘外切酶活性,ε亚基具有3‘→5‘外切酶活性。另外,全酶中还有ATP分子它是DNA聚合酶Ⅲ催化第一个脱氧核糖核苷酸连接在RNA引物上所必需的,其他亚基的功能尚不清楚。

在DNA复制叉处要能由两套DNA聚合酶Ⅲ在同一时间分别进行复制DNA前导链和滞后链。如果滞后链模板环绕DNA聚合酶Ⅲ全酶,并通过DNA聚合酶Ⅲ,然后再折向与未解链的双链DNA在同一方向上,则滞后链的合成可以和前导链的合成在同一方向上进行。

第四百四十一章

在前导链的复制引发过程中还需要其他一些蛋白质,如大肠杆菌的dnaA蛋白。这两种蛋白质可以和复制起点处DNA上高度保守的4个9bp长的序列结合,其具体功能尚不清楚。可能是这些蛋白质与DNA复制起点结合后能促进DNA聚合酶Ⅲ复合体的七种蛋白质在复制起点处装配成有功能的全酶。DNA复制开始时,DNA螺旋酶首先在复制起点处将双链DNA解开,通过转录激活合成的RNA分子也起分离两条DNA链的作用,然后单链DNA结合蛋白质结合在被解开的链上。由复制因子X(n蛋白),复制因子Y(n‘蛋白),n〃蛋白,i蛋白,dnaB蛋白和dnaC蛋白等6种蛋白质组成的引发前体(preprimosome),在单链DNA结合蛋白的作用下与单链DNA结合生成中间物,这是一种前引发过程。引发前体进一步与引物酶(primase)组装成引发体(primosome)。引发体可以在单链DNA上移动,在dnaB亚基的作用下识别DNA复制起点位置。首先在前导链上由引物酶催化合成一段RNA引物,然后,引发体在滞后链上沿5‘→3‘方向不停的移动(这是一种相对移动,也可能是滞后链模板在移动,见后),在一定距离上反复合成RNA引物供DNA聚合酶Ⅲ合成冈崎片段使用,引发体中许多蛋白因子的功能尚不清楚。但是,这些成份必须协同工作才能使引发体在滞后链上移动,识别合适的引物合成位置,并将核苷酸在引发位置上聚合成RNA引物。由于引发体在滞后链模板上的移动方向与其合成引物的方向相反,所以在滞后链上所合成的RNA引物非常短,一般只有3-5个核苷酸长。而且,在同一种生物体细胞中这些引物都具有相似的序列,表明引物酶要在DNA滞后链模板上比较特定的位置(序列)上才能合成RNA引物。

为什么需要有RNA引物来引发DNA复制呢?这可能尽量减少DNA复制起始处的突变有关。DNA复制开始处的几个核苷酸最容易出现差错,因此,用RNA引物即使出现差错最后也要被DNA聚合酶Ⅰ切除,提高了DNA复制的准确性。RNA引物形成后,由DNA聚合酶Ⅲ催化将第一个脱氧核苷酸按碱基互补原则加在RNA引物3‘-OH端而进入DNA链的延伸阶段。

DNA新生链的合成由DNA聚合酶Ⅲ所催化,然而,DNA必须由螺旋酶在复制叉处边移动边解开双链。这样就产生了一种拓扑学上的问题:由于DNA的解链,在DNA双链区势必产生正超螺旋,在环状DNA中更为明显,当达到一定程度后就会造成复制叉难再继续前进,从而终止DNA复制。但是,在细胞内DNA复制不会因出现拓扑学问题而停止。有两种机制可以防止这种现象发生:'1'DNA在生物细胞中本身就是超螺旋,当DNA解链而产生正超螺旋时,可以被原来存在的负超螺旋所中和;'2'DNA拓扑异构酶Ⅰ要以打开一条链,使正超螺旋状态转变成松弛状态,而DNA拓扑异构酶Ⅱ(旋转酶)可以在DNA解链前方不停地继续将负超螺旋引入双链DNA。这两种机制保证了无论是环状DNA还是开环DNA的复制顺利的解链————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

再由DNA聚合酶Ⅲ合成新的DNA链。前已述及DNA生长链的延伸主要由DNA聚合酶催化,该酶是由7种蛋白质(多肽)组成的聚合体,称为全酶。全酶中所有亚基对完成DNA复制都是必需的。α亚基具有聚合功能和5‘→3‘外切酶活性,ε亚基具有3‘→5‘外切酶活性。另外,全酶中还有ATP分子它是DNA聚合酶Ⅲ催化第一个脱氧核糖核苷酸连接在RNA引物上所必需的,其他亚基的功能尚
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!